

George Mason University

Climate Action Plan Town Hall

January 28th, 2022

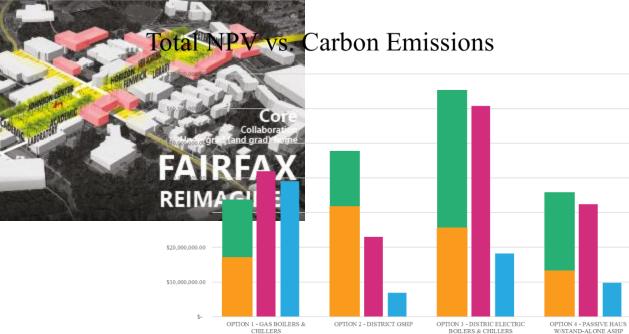
Agenda

Brief Review of Climate Action Plan ProcessElectric Grid ImpactsFuture Trajectory ScenariosNext Steps & Idea Gathering

Objectives

- Share the CAP progress
- Review levels of influence and control
- Understand different future scenarios
- Outline points of engagement

CAP Process



Mason Students' Climate Rally (2019)

RENEV

■ CAPITAL COST ■NPV ■ CARBON EMISSIONS ■FUTURE CARBON EMISSIONS

Axis Title

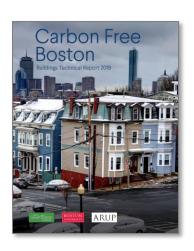
7,000.00

6,000.00

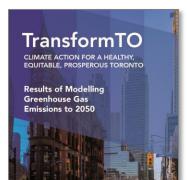
5,000.00

4,000.00

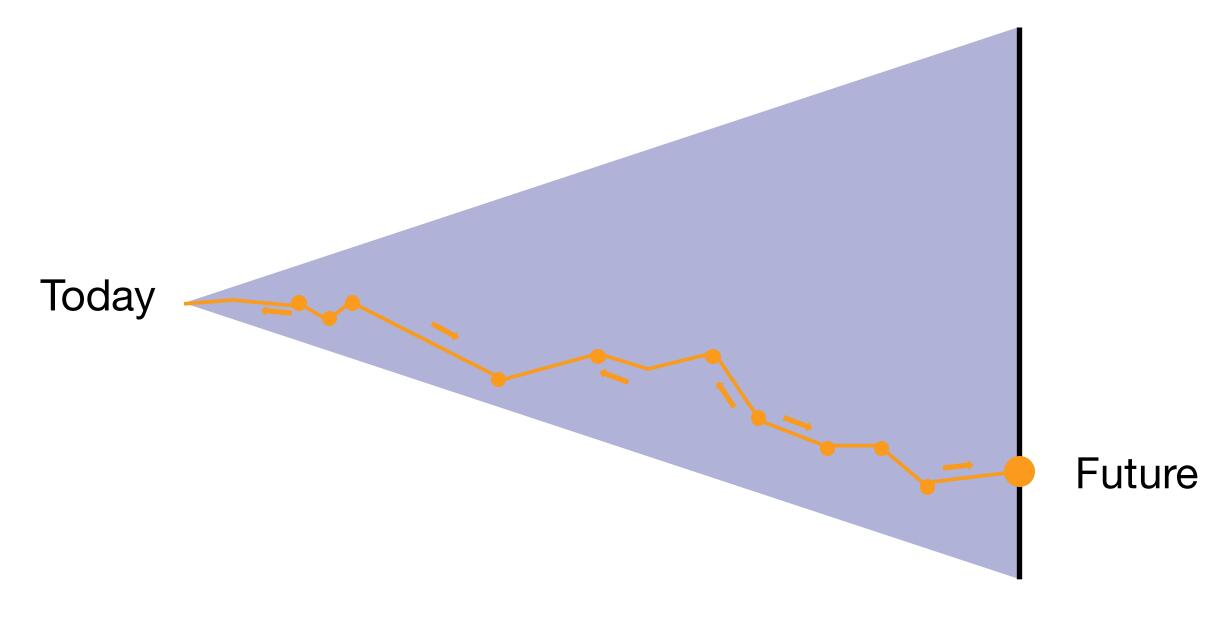
3,000.00


2,000.00

1,000.00

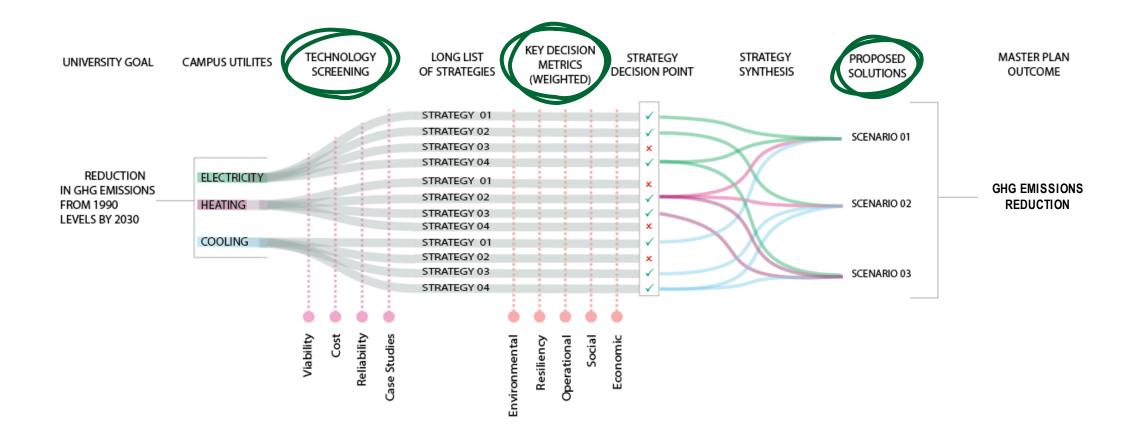

0.00

What is a Climate Action Plan?


SSC SUSTAINABILITY

Creating a Roadmap

GHG Emissions Definition


Carbon Neutrality

Carbon neutrality is defined as having no net greenhouse gas (GHG) emissions, to be achieved by either;

- a. eliminating net GHG emissions, or
- b. by minimizing GHG emissions as much as possible and using carbon offsets or other measures to mitigate the remaining emissions.

 $Second \, Nature-The \, Presidents' \, Climate \, Leadership \, Commitments \\ \underline{https://secondnature.org/signatory-handbook/frequently-asked-questions/$

CAP strategy and evaluation criteria

Evaluation Criteria

Carbon / GHG reduction

Operational energy use

Water use

Capital costs

O&M costs

Co-Benefits

Economics / Job Creation

Resilience

Social Justice / Community Engagement

Environmental/Ecological

Education/Curriculum opps

Health and Wellness

Electricity Impact on GHG Emissions

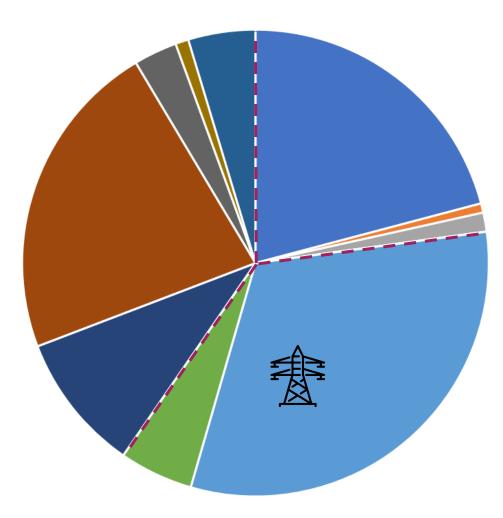
hission Scopes

Scope 1

Emissions from sources owned / controlled by the University

Scope 2

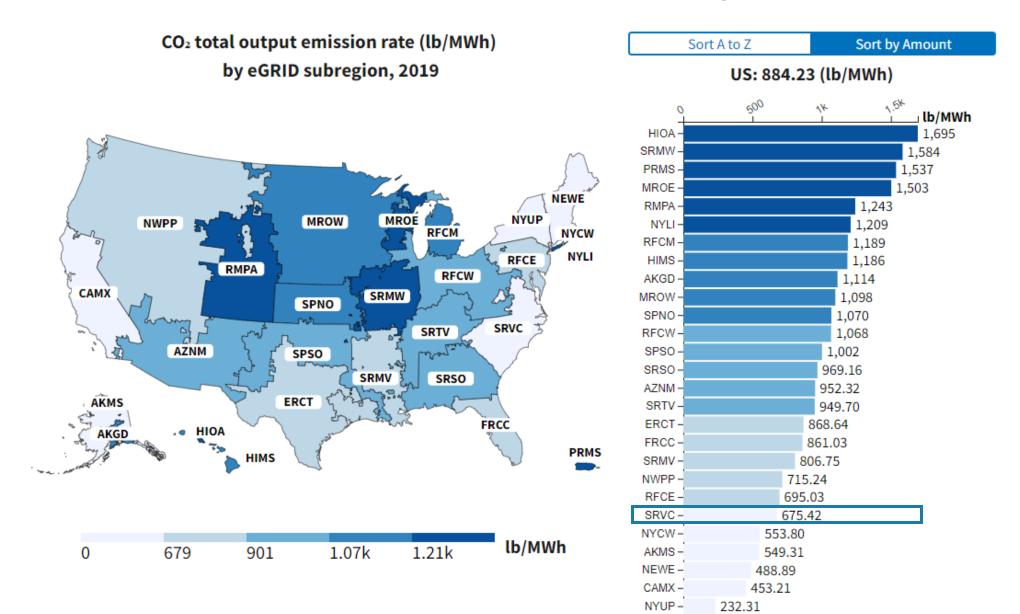
Indirect emissions from utilities purchased by the University

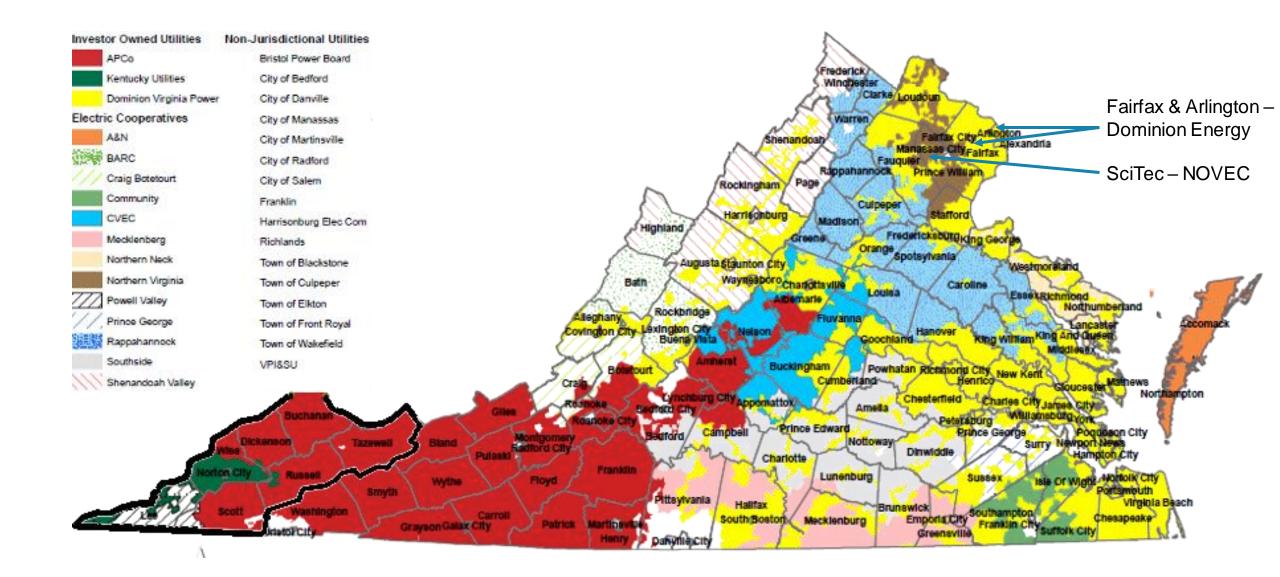

Scope 3

University emissions from activities which sources are not owned / controlled by the University

GMU Owned Systems	Fossil fuel powered equipment	Refriger ant discharge	Biodiesel		μ μ μ	Embodied carbon	Operational waste management
Buildings	Fossil fuel boilers and generators	Refriger ant discharge	Gas cooking equipment	Grid Electric	ity	Business, conference & athletic travel	Student & employee commuting
Fueled fleet vehicles	Gasoline and diesel	CNG/LNG	Biodiesel			Water supply and treatment	Purchased goods and services

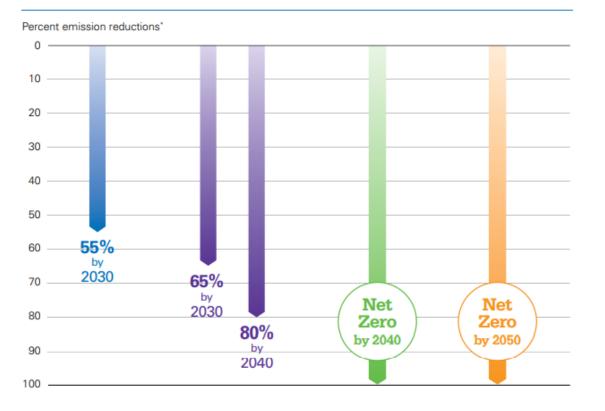
Included in Second Nature Carbon Commitment




Scope	Emissions Source	MTCDE
	Other On-Campus Stationary	22,373
4	Direct Transportation	690
1	Refrigerants & Chemicals	1,410
	Fertilizer & Animals/ Agriculture	8
0	Purchased Electricity	33,885
2	*Electricity from CHCP*	*5,480*
	Faculty / Staff Commuting	10,290
	Student Commuting	23,818
3	Directly Financed Air Travel	3,225
	Other Directly Financed Travel	974
	Study Abroad Air Travel	4,984

*Emissions from CHCP Electricity is estimated based on EPA eGRID emissions factor

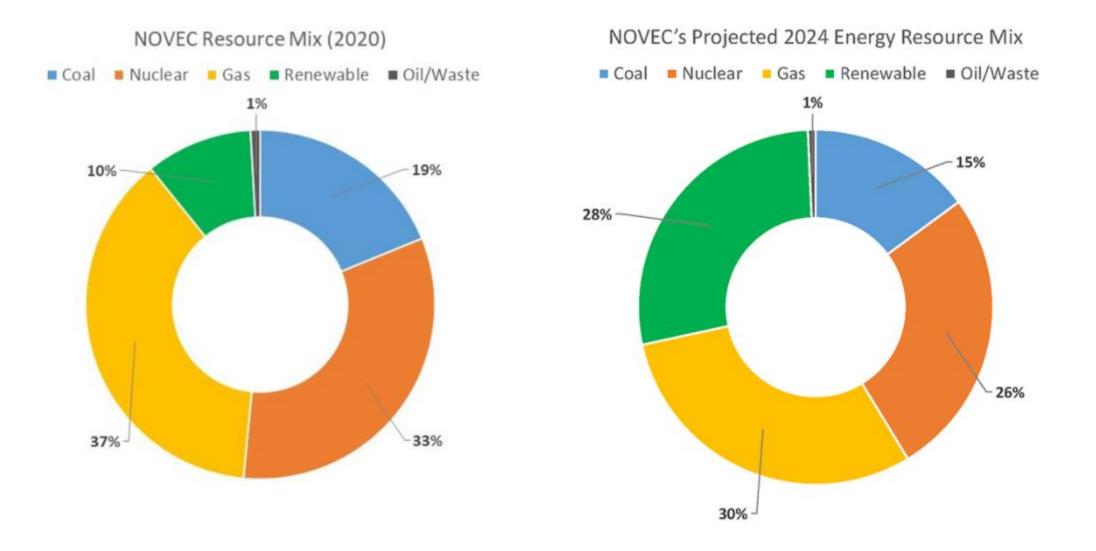
Electric Grid – Carbon Intensity


Virginia Electric Utilities

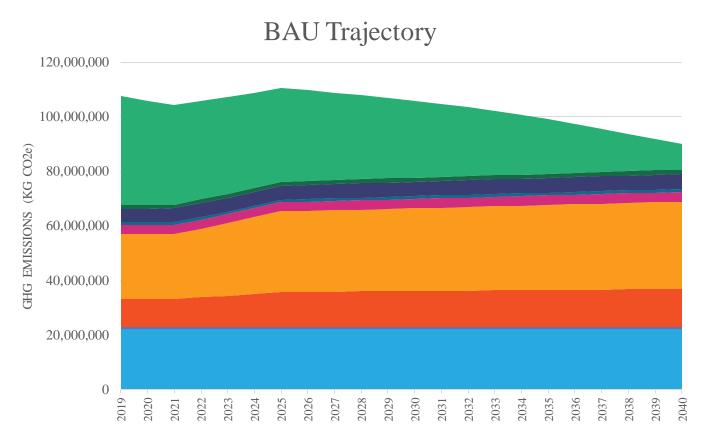
Dominion Energy – Scope 2 Impact

Interim Scope 1 Emissions Reduction Targets

To achieve company-wide Net Zero carbon and methane emissions



"Dominion Energy is accelerating the transformation of the energy sector through our pursuit of achieving Net Zero emissions by 2050 in our clean energy strategy."


Dominion Energy Climate Report 2021

- Electric business (carbon)
- Gas business (methane)
- Gas business (carbon and methane)
- Electric business (carbon and methane)

NOVEC – Scope 2 Impact

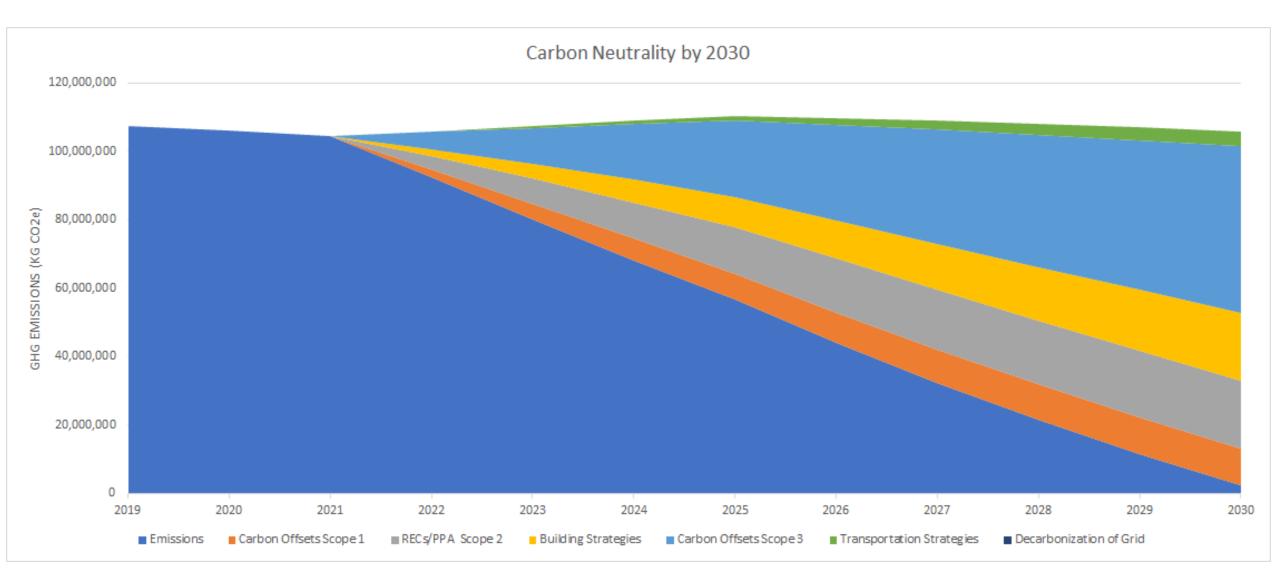
CAP Business as Usual Growth Assumptions

	Current	2025 President's Goals	2026 – 2050 Annual Growth	
Total Building GSF	8,830,000 GSF	9,657,212 GSF	+1.828%	
On-Campus Students	6,118 FTE	6,118 FTE	+0.816%	
Off-Campus Students	19,248 FTE	23,248 FTE	+0.215%	
Virtual Student	3,890 FTE	6,890 FTE	+1.451%	
On-Campus Faculty/Staff	4,394 FTE	5,445 FTE*	+0.509%	
Virtual Faculty/Staff	488 FTE	605 FTE*	+0.562%	
SRVC Grid	85% reduction by 2040			

*Assumptions based on current student : faculty/staff ratios

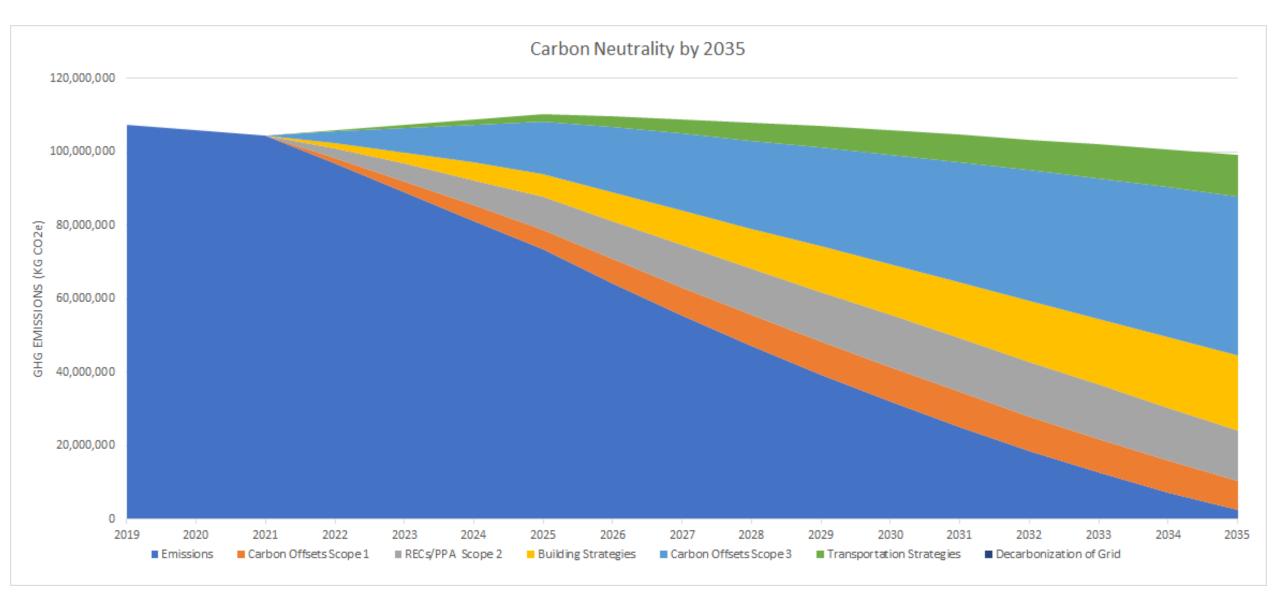
Other On-Campus Stationary
 Faculty/Staff Commuting
 Directly Financed Air Travel
 Study Abroad Air Travel
 Purchased Electricity

- Direct Transportation
- Student Commuting
- Other Directly Financed Travel
- Refrigerants/Chemicals/Fertilizer

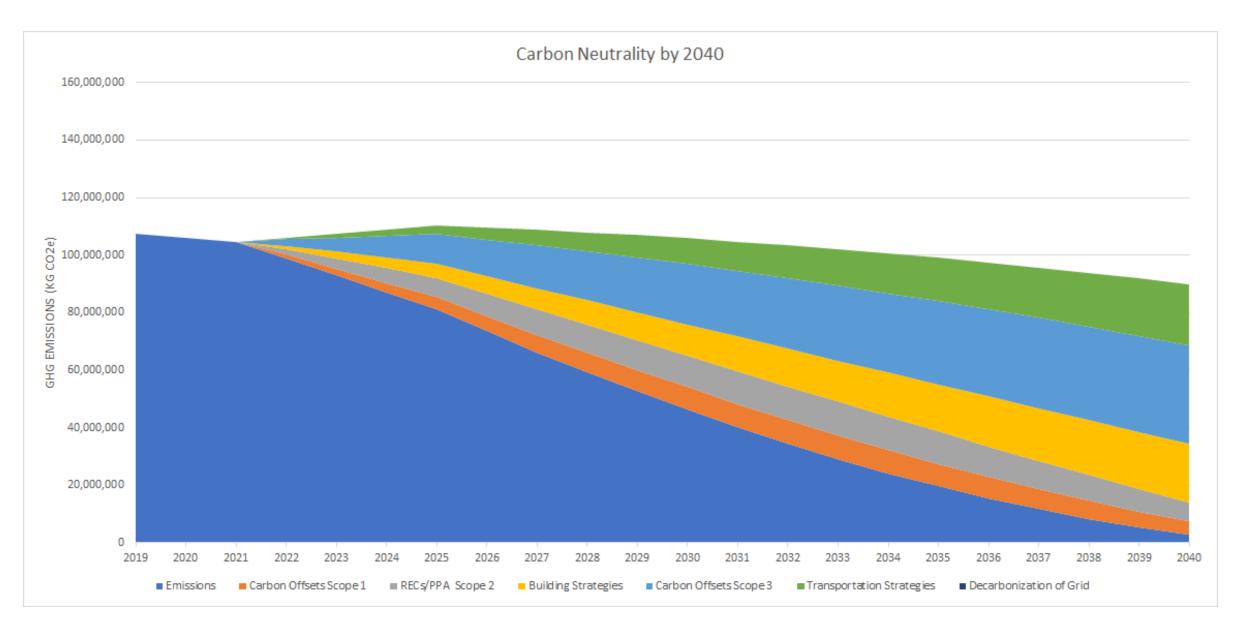

Future Scenario Trajectories

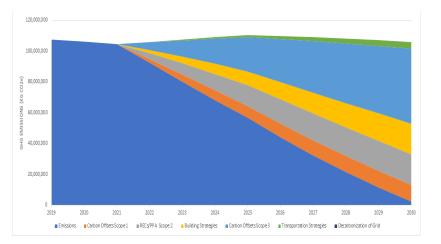
Scenarios Overview

- High level mitigation strategies charted against BAU trajectory –2030, 2035 & 2040 goals
 Initial bigh lovel list of strategies
 - -Initial, high level list of strategies
- Reduction impact minus offsets from remaining emissions
 –Carbon offset purchases for Scope 1 & 3
 –RECs/PPA for Scope 2
- Timelines influence ability to implement and finance projects

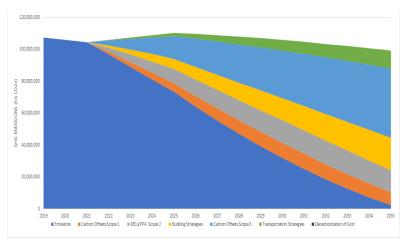

Scope	Strategy	Metric	GHG Impact (MT)
1	Standalone Building Efficiency	10% increase from baseline	2,000
1	Building electrification	N/A – increase in this timeline	N/A
1	Existing Central Plant Efficiency (FFX)	15% increase from baseline	3,000
1	Central Plant Upgrades/Expansion (FFX)	N/A – longer timeline	N/A
1	Remaining Scope 1 Carbon	Remaining tons	20,000
2	On-site renewables	2 MW PV	500
2	Remaining Scope 2 – Electricity Purchasing	Remaining 130,000 MWh	25,00

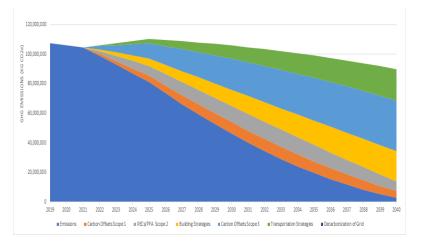
Scope	Strategy	Metric	GHG Impact
1	Standalone Building Efficiency Increase	10% increase from baseline	2,000
1	Building electrification	N/A – increase in this timeline	N/A
1	Existing Central Plant Efficiency (FFX)	15% increase from baseline	3,000
1	Central Plant Upgrades/Expansion (FFX)	N/A – longer timeline	N/A
1	Remaining Scope 1 – Carbon Offset Purchasing	Remaining tons	20,000
2	On-site renewables	2 MW PV	500
2	Remaining Scope 2 – Electricity Purchasing	Remaining 130,000 MWh	25,00
3	Single Occupant Vehicle Miles Traveled	10% decrease	2,000
3	Mode Shift Emissions Factor	15% decrease	4,000
3	Remaining Commuter Emissions – Carbon Offsets	Tons remaining	43,000
3	Air/Business Travel Emissions – Carbon Offsets	Tons remaining	10,000


Scope	Strategy	Metric	GHG Impact (MT)
1	Standalone Building Efficiency	10% increase	2,000
1	Building electrification	20% of existing buildings	400
1	Existing Central Plant Efficiency (FFX)	20% increase	3,500
1	Central Plant Upgrades/Expansion (FFX)	All new construction	4,000
1	Remaining Scope 1 Carbon	Remaining tons	18,000
2	On-site renewables	4 MW PV	650
2	Remaining Scope 2 – Electricity Purchasing	Remaining 150,000 MWh	14,000


Scope	Strategy	Metric	GHG Impact
1	Standalone Building Efficiency	10% increase	2,000
1	Building electrification	20% of existing buildings	400
1	Existing Central Plant Efficiency (FFX)	20% increase	3,500
1	Central Plant Upgrades/Expansion (FFX)	All new construction	4,000
1	Remaining Scope 1 Carbon	Remaining tons	18,000
2	On-site renewables	4 MW PV	650
2	Remaining Scope 2 – Electricity Purchasing	Remaining 150,000 MWh	14,000
3	Single Occupant Vehicle Miles Traveled	15% decrease	3,000
3	Mode Shift Emissions Factor	25% decrease	5,000
3	Remaining Commuter Emissions – Carbon Offsets	Tons remaining	44,000
3	Air/Business Travel Emissions – Carbon Offsets	Tons remaining	10,000

Scope	Strategy	Metric	GHG Impact (MT)
1	Standalone Building Efficiency	25% increase	1,000
1	Building electrification	35% of existing buildings	2,000
1	Existing Central Plant Efficiency (FFX)	20% increase	4,000
1	Central Plant Upgrades/Expansion (FFX)	All new construction	2,500
1	Remaining Scope 1 Carbon	Remaining tons	17,000
2	On-site renewables	6 MW PV	400
2	Remaining Scope 2 – Electricity Purchasing	Remaining 160,000 MWh	5,000


Scope	Strategy	Metric	GHG Impact
1	Standalone Building Efficiency	25% increase	1,000
1	Building electrification	35% of existing buildings	2,000
1	Existing Central Plant Efficiency (FFX)	20% increase	4,000
1	Central Plant Upgrades/Expansion (FFX)	All new construction	2,500
1	Remaining Scope 1 Carbon	Remaining tons	17,000
2	On-site renewables	6 MW PV	400
2	Remaining Scope 2 – Electricity Purchasing	Remaining 160,000 MWh	5,000
3	Single Occupant Vehicle Miles Traveled	15% decrease	4,000
3	Mode Shift Emissions Factor	25% decrease	8,000
3	Remaining Commuter Emissions – Carbon Offsets	Tons remaining	45,000
3	Air/Business Travel Emissions – Carbon Offsets	Tons remaining	10,000



•

Next Steps

Phase II: April 2022 and forward

Gathering Your Input

Climate Action Plan

HOME / RESOURCES / CLIMATE ACTION PLAN

Looking to the future... of Climate Action

Planning is essential to success, especially when we are already experiencing the initial impacts of global climate warming. In order for Mason to continue on our trajectory toward the "university of the future," we must be rigorous, consultative, and imaginative in formulating strategic climate actions reduce our contribution to global warming. We must identify data-informed opportunities to realize our values so that we can reduce greenhouse gas emissions.

George Mason University is accelerating action in response to the climate crisis by developing a new <u>Climate Action Plan</u> (CAP).

The CAP development is an initiative led by a partnership between <u>GMU Facilities</u> and the Mason Sustainability Council's <u>Carbon Neutrality Task Force</u>. The <u>Mason Sustainability Council</u> is a group of academic and operational leaders from across the University that is tasked with developing and directing sustainability strategy, planning and action, and identifying opportunities that benefit research, curricular, and operational sustainability simultaneously.

Document Library 🔊 ACTION WINS Key Definitions 🗿 at Mason in the last 11 years Mason publishes its first-ever Climate Action Townhalls 📀 Plan detailing how the university will fulfill its commitment to attain carbon neutrality Mason creates the 'Green Leaf' catalog designation for 12 academic programs and Contact Us 🔊 30 courses that teach Mason joins the United sustainability. Nations Global Compad the world's largest corporate sustainability Mason integrates Environmental Standards into its Design Information Manual, ensuring sustainability is part of all Mason becomes the first university in Virginia to construction and renovation earn a Gold rating from work across Mason's the Association for the campuses. Advancement of Sustainability in Higher Education's (AASHE) President Cabrera signs Sustainability Tracking, Mason to the White Assessment, and Rating House's American System (STARS). Campuses Act on Climate (ACAC) initiative in the lead-up to Conference of the Parties (COP) 21 in Paris, Mason adds a multidisciplinary research nitiative focused on supporting resilient and Mason launches the Institute for a Sustainable sustainable societies" and Earth, fulfilling a key research component of spends \$64 million on Mason's vision for sustainability in academic research in FY18. endeavors and leveraging research to action

Share climate action strategies and ideas today via Zoom

Use the CAP website Contact Us form

https://facilities.gmu.edu/resources/climateaction-plan/

Upcoming Town Hall Schedule

- Friday, February 18th
- Wednesday, March 9th

Thank you!